MATH4240: Stochastic Processes Tutorial 8

WONG, Wing Hong

The Chinese University of Hong Kong

whwong@math.cuhk.edu.hk

22 March, 2021

Let the number of customers arriving in unit time has density f and mean μ . Suppose that the chain is irreducible, then f(0) > 0 and f(0) + f(1) < 1, as shown in previous tutorial. We saw that the chain is recurrent if $\mu \leq 1$ and transient if $\mu > 1$.

Now, we will show

$$m_0=\frac{1}{1-\mu},$$

where $m_0 = \mathbb{E}_0[T_0]$. It follows that if $\mu < 1$, then $m_0 < \infty$ and hence 0 is a positive recurrent state. By irreducibility, the chain is positive recurrent. On the other hand, if $\mu = 1$, then $m_0 = \infty$ and hence 0 is a null recurrent state. We conclude that an irreducible queuing chain is *positive recurrent* if $\mu < 1$, null recurrent if $\mu = 1$ and transient if $\mu > 1$.

We assume f(0) > 0, f(0) + f(1) < 1 and $\mu \le 1$, so that the chain is irreducible and recurrent. Consider the chain start at a positive integer x. Then T_{x-1} denotes the time to go from state x to state x - 1, and $T_{y-1} - T_y$, $1 \le y \le x - 1$, denotes the time to go from state y to state y - 1. Since the queuing chain goes at most one step to the left at a time, the Markov property insures that the random variables

$$T_{x-1}, T_{x-2} - T_{x-1}, \dots, T_0 - T_1$$

are independent. These random variables are identically distributed as

$$\min\{n > 0 : \xi_1 + \dots + \xi_n = n - 1\},\$$

i.e., as the smallest positive integer n such that the number of customers served by time n is one more than the number of new customers arriving by time n.

Let $G(t), 0 \le t \le 1$ denote the probability generation function of the time to go from state 1 to state 0, i.e.

$$G(t)=\sum_{n=1}^{\infty}t^{n}P_{1}(T_{0}=n).$$

The probability generating function of the sum of independent nonnegative integer-valued random variables is the product of their respective probability generating functions. If the chain starts at x, then

$$T_0 = T_{x-1} + (T_{x-2} - T_{x-1}) + \dots + (T_0 - T_1)$$

is the sum of x independent random variables each having probability generating function G(t).

Thus, the probability generating function of T_0 is

$$(G(t))^{x} = \sum_{n=1}^{\infty} t^{n} P_{x}(T_{0} = n).$$

We will now show that

$$G(t) = t\Phi(G(t)), \quad 0 \le t \le 1,$$

where Φ denotes the probability generating function of f.

$$G(t) = \sum_{n=1}^{\infty} t^n P_1(T_0 = n)$$

= $tP(1,0) + t \sum_{n=1}^{\infty} t^n P_1(T_0 = n+1)$
= $tP(1,0) + t \sum_{n=1}^{\infty} t^n \sum_{y \neq 0} P(1,y) P_y(T_0 = n)$
= $tP(1,0) + t \sum_{y \neq 0} P(1,y) \sum_{n=1}^{\infty} t^n P_y(T_0 = n)$
= $tf(0) + t \sum_{y \neq 0} f(y)(G(t))^y$
= $t\Phi(G(t)).$

Now, we differentiate $G(t) = t \Phi(G(t))$ for 0 < t < 1, and obtain

$$G'(t) = \Phi(G(t)) + tG'(t)\Phi'(G(t))$$

and

$$G'(t) = rac{\Phi(G(t))}{1-t\Phi'(G(t))}, 0 < t < 1.$$

Take t
ightarrow 1, we have ${\it G}(t)
ightarrow 1$ and ${\Phi}(t)
ightarrow 1$ and

$$\lim_{t \to 1} \Phi'(t) = \lim_{t \to 1} \sum_{x=1}^{\infty} xf(x)t^{x-1} = \sum_{x=1}^{\infty} xf(x) = \mu.$$

Thus,

$$\lim_{t \to 1} G'(t) = \lim_{t \to 1} \frac{\Phi(G(t))}{1 - t \Phi'(G(t))} = \frac{1}{1 - \mu}.$$

Recall

$$G(t):=\sum_{n=1}^{\infty}P_1(T_0=n)t^n.$$

Since P(1,x) = P(0,x) for queuing chain. We have

$$G(t) = \sum_{n=1}^{\infty} P_0(T_0 = n)t^n$$

and hence

$$\frac{1}{1-\mu} = \lim_{t \to 1} G'(t) = \lim_{t \to 1} \sum_{n=1}^{\infty} n P_0(T_0 = n) t^{n-1}$$
$$= \sum_{n=1}^{\infty} n P_0(T_0 = n)$$
$$= \mathbb{E}_0[T_0] = m_0.$$

Decomposition of state space for periodic MC

Let X_n , $n \ge 0$, be an irreducible Markov chain with state space S. The *period* is given by

$$d = g.c.d.\{n \ge 1 : P^n(x,x) > 0\}, \qquad x \in \mathcal{S},$$

where g.c.d. means the greatest common divisor and d is independent of the choice of x.

Suppose that the chain is periodic $(d \ge 2)$. Let $Y_m = X_{md}$, $m \ge 0$. Then Y_m , $m \ge 0$, is an aperiodic Markov chain with transition matrix $Q = P^d$. Moreover, the chain Y_m may be reducible and S is a union of d irreducible closed set:

$$\mathcal{S} = \mathcal{C}_1 \cup \mathcal{C}_2 \cup \cdots \cup \mathcal{C}_d, \tag{1}$$

where for $i \in \{1, 2, \dots, d\}$ and $x \in \mathcal{C}_i$ (we set $\mathcal{C}_{d+1} = \mathcal{C}_1$ here) we have

P(x,y) > 0 only if $y \in C_{i+1}$.

Example 0. Let $\mathcal{S} = \{1, 2\}$,

$$P = \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Then,

$$P^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

period d = 2 and $S = C_1 \cup C_2$, with $C_1 = \{1\}$ and $C_2 = \{2\}$. Note that it has a stationary distribution $\pi = (1/2, 1/2)$.

Example 1. Recall that in the last tutorial, we have a example: $\mathcal{S} = \{1, 2, 3, 4\},\$

$$P = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 2/3 & 0 & 0 & 1/3 \\ 0 & 1 & 0 & 0 \end{pmatrix}.$$

Decomposition of state space for periodic MC

Note that

$$P^{2} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 2/3 & 0 & 0 & 1/3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, P^{3} = \begin{pmatrix} 2/3 & 0 & 0 & 1/3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 2/3 & 0 & 0 & 1/3 \end{pmatrix},$$

$$P^4 = \left(egin{array}{cccc} 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 2/3 & 0 & 0 & 1/3 \ 0 & 1 & 0 & 0 \end{array}
ight) = P.$$

Easily we get the period d = 3. Then $S = C_1 \cup C_2 \cup C_3$ with

$$\mathcal{C}_1 = \{1,4\}, \quad \mathcal{C}_2 = \{2\}, \quad \text{and} \quad \mathcal{C}_3 = \{3\}.$$

Decomposition of state space for periodic MC

Example 2. $S = \{1, 2, 3, 4, 5, 6, 7\},\$

$$P = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 0 & 0 & \frac{1}{2} & \frac{1}{4} & \frac{1}{4} & 0 & 0 \\ 0 & 0 & \frac{1}{3} & 0 & \frac{2}{3} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{3} & \frac{2}{3} \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{4} & \frac{3}{4} \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{4} & \frac{3}{4} & 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Similarly we have d = 3 and $S = C_1 \cup C_2 \cup C_3$ with $C_1 = \{1, 2\}, \quad C_2 = \{3, 4, 5\}, \quad C_3 = \{6, 7\}.$

WONG, Wing Hong (CUHK)